Самые далекие планеты, Выжить в Солнечной системе. Где есть условия для зарождения жизни?
С этого мгновения все человечество неотрывно следило за первым космическим полетом, совершавшимся на наших глазах. Со временем, когда мировое пространство будет освоено человеком и межпланетные полеты станут частыми и регулярными, окажутся возможными и методы автоматической радионавигации, широко применяемые в настоящее время в авиации и при наведении управляемых снарядов. Чтобы траектория была параболической, нужно выдержать абсолютно точное значение параболической скорости.
Как мы уже упоминали выше, Нептун — самая дальняя планета от Солнца. Иногда ледяной гигант находится даже дальше от нашей звезды, чем карликовая планета Плутон! Среднее расстояние между Нептуном и Солнцем составляет 30 астрономических единиц или 4,5 миллиарда км. Однако иногда Нептун оказывается даже дальше от Солнца, чем Плутон: из-за высокой эксцентричности своей орбиты Плутон попадает внутрь орбиты ледяного гиганта каждые земных лет и остается там в течение 20 лет.
Последний раз такое перемещение произошло в году и длилось до года. По мере движения Нептуна и Земли по своим орбитам, расстояние между планетами постоянно меняется. При максимальном приближении к Земле, Нептун находится на расстоянии 4,3 миллиарда км, а во время наибольшего удаления дистанция составляет 4,7 миллиарда км.
Из-за того, что Нептун находится на огромном расстоянии от нас, он был открыт последним из всех планет Солнечной системы. Продолжительность путешествия до той или иной планеты зависит от ее положения, а также от маршрута и скорости космического корабля.
Этот космический зонд был запущен в году для изучения внешних планет. Посетив Юпитер, Сатурн и Уран, он направился к Нептуну. Космический корабль изучил атмосферу, магнитосферу, кольца и спутники Нептуна и сделал удивительные снимки ледяного гиганта. На данный момент нет подтвержденных будущих миссий на эту далекую планету. Наряду с Ураном Нептун является одним из двух ледяных гигантов нашей Солнечной системы.
Кроме того, это самый плотный из всех планет-гигантов. Как и остальные планеты Солнечной системы, Нептун сформировался около 4,5 миллиардов лет назад. Ученые считают, что ранее голубая планета находилась ближе к Солнцу, чем сейчас, и заняла свое нынешнее положение во внешней Солнечной системе около 4 миллиардов лет назад. Ядро Нептуна окружено горячей жидкой мантией, которая богата водой, метаном и аммиаком. Мантия, в свою очередь, покрыта слоем облаков. Ледяной гигант не имеет твердой поверхности.
Поскольку Нептун находится на большом расстоянии от Солнца, внешние слои его атмосферы являются одним из самых холодных мест в Солнечной системе. Ветры во время шторма были самыми сильными из когда-либо зарегистрированных на планетах Солнечной системы. К году Большое темное пятно полностью исчезло; однако очень похожее пятно появилось в северном полушарии Нептуна в году.
Как и другие планеты-гиганты, Нептун имеет большую систему естественных спутников. Все луны ледяного гиганта были названы в честь божеств, связанных с водой, из греческой и римской мифологии. У Нептуна есть 14 известных спутников. Первым открытым спутником Нептуна является Тритон : его обнаружил Уильям Лассел через семнадцать дней после открытия голубой планеты в году. Еще один естественный спутник Нептуна был обнаружен в года Джерардом П.
Койпером, который назвал эту луну Нереидой. В году группа астрономов обнаружила третью луну Нептуна Лариссу. Последней в году была открыта маленькая луна под названием Гиппокамп. Имея диаметр км, Тритон является самым большим спутником Нептуна и седьмым по величине спутником в Солнечной системе. Поскольку у него много общего с Плутоном, Тритон считается независимым объектом вероятно, карликовой планетой , захваченным гравитацией Нептуна из пояса Койпера.
Как и другие газовые гиганты — Юпитер, Сатурн и Уран — Нептун может похвастаться системой колец. У Нептуна есть пять основных колец, названных в честь астрономов, изучавших планету: Галле, Леверье, Лассела, Араго и Адамса.
Несмотря на то, что в соответствии с законами механики дуги должны были бы соединиться в однородное кольцо, они являются стабильными структурами; ученые полагают, что гравитационное влияние спутника Нептуна Галатеи может удерживать дуги в таком положении. Наличие жизни на Ио, конечно, находится под большим вопросом. Гораздо оптимистичнее обстоят дела с еще одной луной Юпитера — Европой. По размерам Европа немного уступает земной Луне диаметр 3 ,6 км.
Спутник был открыт Галилео Галилеем в начале года. Ученые давно считают, что под толщей снега и льда Европы находится обширный океан с жидкой водой, то же касается и других спутников Юпитера — Ганимеда и Каллисто, также открытых Галилеем. Глубина ледяного панциря Европы, по оценкам ученых, составляет как минимум несколько десятков километров.
Сейчас многие исследователи размышляют о том, как же пробиться вглубь соленого океана Европы. В середине х годов для исследования Европы в космос должен отправиться американский аппарат Europa Clipper. Предполагают , что внутри Европы должно быть мощное круговое течение.
К такому выводу пришли французские ученые, построившие компьютерную модель этого небесного тела. Примечателен и другой юпитерианский спутник — Ганимед, самая большая луна этого газового гиганта диаметр 5 ,2 км.
Но это еще не самое интересное: оказывается, в самом первом океане Ганимеда есть такое явление, как снег, идущий вверх! Так вот, вода там иногда начинает замерзать, однако эти льдинки менее плотные, чем окружающий соленый раствор океана, поэтому они поднимаются наверх. Находясь на подводном корабле, мы могли бы увидеть, как эти снежинки идут вверх и оседают на верхнем ледяном слое», — поясняет Авдеев. Кислотный состав воды на спутниках планет Солнечной системы отличается от земного, тем не менее есть вероятность, что микроорганизмы, будучи переселенными туда, смогут выжить.
Перейдем к еще одному газовому гиганту — Сатурну. Несомненно, самым многообещающим его спутником в плане поиска жизни можно назвать Титан, который так часто сравнивают с ранней Землей.
Крупнейшая луна Сатурна, Титан — поистине удивительно небесное тело. Ее толщина — около тысячи километров, а плотность в четыре раз превосходит плотность земной атмосферы.
С Землей Титан роднит и круговорот жидкости в природе, причем на Титане циркулирует метан — тот самый газ, который горит в наших газовых плитах.
Жидким его делает температура в минус градусов Цельсия. На холодном Титане обнаружены реки и моря из жидкого из метана и этана, а также горы, в основании которых предположительно находится водяной лед. Резервуаров с жидкостью, как на Титане, нет больше ни на одном спутнике в Солнечной системе.
Метан может выпадать здесь в виде осадков, наподобие нашего дождя на Земле. Крупные метановые капли падают на поверхность очень медленно, представляя собой, думается, весьма эффектное зрелище. Приземление на Титан анимация миссии «Кассини-Гюйгенс» года. Пейзажи Титана поразительно похожи на наши, земные.
Озера и моря, округлые гладкие камни, обтесанные жидкостью, горы и облака кажутся такими знакомыми, что на минуту даже верится, что где-то там бурлит жизнь. Однако никаких прямых доказательств тому пока нет, хотя условия на Титане вполне благоприятствуют зарождению жизни. Еще один спутник Сатурна, Энцелад, не менее интересен.
На ледяном Энцеладе есть гейзеры, состоящие из воды и органических соединений, и, предположительно, глобальный подледный океан из жидкой и горячей воды, соленый и газированный. В ходе исследования Энцелада были обнаружены не только гейзеры и выбросы паров воды, но и выбросы льдинок, а также микроскопических песчинок.
Ранее, до исследований Энцелада, было совершенно непонятно, откуда у внешнего кольца Сатурна E-кольцо столь большое количество воды. У Энцелада есть атмосфера, хоть и сильно разреженная. Она состоит преимущественно из водяного пара, а также из азота, углекислого газа и метана.
Ядро спутника — силикатное. Это ярчайшее тело в Солнечной системе: установлено, что Энцелад, с его относительно молодой и незапыленной ледяной поверхностью, отражает рекордное количество света и сверкает ослепительной белизной. Фото: фотобанк RF. В году в журнале Nature была опубликована статья, сообщавшая, что на Энцеладе обнаружены сложные органические соединения.
В этом же году ученые из Вены в своей лаборатории воссоздали условия, аналогичные условиям на этой ледяной луне Сатурна. На примере архей Methanothermococcus okinawensis эксперимент показал, что земные организмы вполне способны выжить на Энцеладе.
Нужно исключить из рассматриваемого случая и районы околоземного пространства, где приходится считаться с полем тяготения Луны. Однако ввиду того, что математика еще не смогла разрешить даже простейшую задачу такого рода — задачу трех тел, — в основу небесной механики положена задача двух тел, а влияние остальных тел учитывается в виде соответствующих сил. Межпланетный полет представляет собой также проблему небесной механики. При этих условиях полет корабля будет происходить так же, как полет снаряда, выстреленного из артиллерийского орудия в безвоздушном пространстве.
Траектория такого полета будет целиком определяться направлением и скоростью снаряда при вылете из ствола орудия. Траектория снаряда при выстреле из пушки, установленной горизонтально, вертикально и под углом. Если пушка установлена вертикально, то снаряд будет двигаться от центра Земли вдоль земного радиуса. Когда кинетическая энергия, полученная снарядом при выстреле, будет полностью израсходована на преодоление земного тяготения, снаряд остановится, а затем начнет падать на Землю по уже раз пройденному пути и снова войдет в ствол орудия с той же скоростью, которой он обладал, покидая его 1.
Чем больше начальная скорость снаряда, тем выше он поднимется над Землей. Мы уже знаем, какова должна быть эта скорость, чтобы снаряд совсем не возвратился на Землю, то есть остановился бы только «в бесконечности».
Эта скорость есть скорость отрыва, равная на поверхности Земли примерно 11,2 километра в секунду 2. При меньшей скорости снаряд будет находиться в полете строго определенное время, достигнет некоторой наибольшей высоты и потом упадет на Землю.
Так, при скорости 7,9 километра в секунду у экватора снаряд достигнет высоты, равной одному земному радиусу, то есть высоты километров. Следовательно, при вертикальном полете ракеты, доставившие на орбиту советские искусственные спутники Земли, достигли бы высоты не менее километров! В действительности дело обстоит гораздо сложнее.
Вертикальный полет практически не может быть реализован. В связи с отклонением формы Земли от шара у полюса притяжение к Земле больше, так как расстояние до центра Земли меньше. Кроме того, на экваторе сила тяжести уменьшается под действием центробежной силы, вызываемой вращением Земли вокруг оси. На полюсе эта сила отсутствует вообще. Пусть теперь пушка установлена горизонтально, как для стрельбы прямой наводкой.
При небольшой начальной скорости снаряда он пролетит немного времени и упадет на Землю, описав над ней небольшую дугу, представляющую собой часть эллипса 1.
Движение по параболе происходило бы в том случае, если бы Земля была плоской. Изогните эту «плоскую» Землю в шар — и парабола превратится в эллипс.
При относительно небольшой дальности полета снарядов эта разница почти неощутима, но, когда дистанция стрельбы увеличивается, ею пренебрегать нельзя. Небесная механика учит, что траектория движения одного тяжелого тела в поле тяготения другого может быть лишь одной из кривых, которые называются коническими сечениями.
Такими кривыми являются круг, эллипс, парабола и гипербола. Их можно получить, рассекая конус плоскостью так, как это показано на рисунке на стр. Снаряд может двигаться вокруг центра Земли только по одной из этих кривых или по радиусу Земли, как в случае вертикального выстрела. Если бы земная поверхность не остановила снаряда, то он продолжал бы свое движение по эллипсу, пока этот эллипс не замкнулся, так что снаряд влетел бы в ствол орудия с его казенной части. Центр Земли оказался бы одним из двух фокусов этого эллипса.
Чем больше начальная скорость снаряда, тем больше эллипс приближается по форме к кругу, пока наконец не достигается такая скорость, при которой орбитой снаряда становится круг с центром в центре Земли. Теперь уже снаряд не упадет, он будет бесконечно обращаться вокруг Земли, пролетая каждый раз через ствол выпустившего его орудия.
Мы уже подробно говорили о таких искусственных спутниках Земли. Начальная скорость снаряда, превращающая его в спутник, то есть так называемая круговая скорость, равна у поверхности Земли, как указывалось выше, 7,9 километра в секунду, она в 1,4 раза меньше скорости отрыва. Время одного полного обращения такого спутника вокруг Земли у ее поверхности равно примерно 1 часу 24 минутам. Дальнейшее увеличение начальной скорости снаряда заставит его двигаться снова по эллиптической орбите, только теперь центр Земли займет место второго фокуса эллипса, ближнего к пушке.
Все выше и выше будет подниматься снаряд над земной поверхностью в точке, являющейся антиподом пушке, то есть по ту сторону земного шара 1. Интересно сравнить наибольшую высоту, которой достигает снаряд при выстреле с одной и той же скоростью из горизонтальной и вертикальной пушек.
Конечно, выстрел прямо вверх оказывается в этом отношении более выгодным. При скорости снаряда, равной круговой, то есть 7,9 километра в секунду, снаряд в случае вертикального выстрела поднимается уже на высоту одного радиуса Земли, тогда как при выстреле из горизонтальной пушки он продолжает оставаться у земной поверхности. Эта разница в один земной радиус, то есть в километров, сохраняется и при дальнейшем увеличении скорости снаряда.
Но зато в точке максимального подъема снаряд, выстреленный вертикально, совершенно теряет свою скорость, тогда как его соперник мчится с огромной скоростью вокруг Земли. Перигей орбиты спутников находился в северном, а апогей — в южном полушариях. Выстрел из наклонной пушки занимает по своим свойствам промежуточное положение между рассмотренными двумя крайними.
Чем ближе положение пушки к вертикальному, тем более вытянутой будет эллиптическая траектория его полета, тем выше он залетит и тем меньше будет его скорость в точке наибольшего удаления от Земли. Большое значение для астронавтики имеет следующая особенность эллиптических орбит. Когда начальная скорость снаряда настолько велика, что он уже удаляется от Земли на большое расстояние, то ничтожное увеличение этой скорости очень сильно меняет орбиту полета снаряда, делает эллипс более вытянутым, так что максимальная высота подъема снаряда сильно увеличивается.
Так, увеличение начальной скорости при горизонтальном выстреле всего на 11 метров в секунду, с 11 до 11 метров в секунду, увеличивает максимальную высоту подъема снаряда с тысяч до тысяч километров над поверхностью Земли. Это показывает, насколько точными должны быть приборы, регулирующие полет межпланетной ракеты — в частности, определяющие момент выключения ее двигателя, — насколько трудна проблема управления межпланетным кораблем.
Конические сечения. Начальная скорость снаряда, равная скорости отрыва, удаляет снаряд в бесконечность как при вертикальном, так и при горизонтальном выстреле.
Как только начальная скорость снаряда достигает этого значения, эллиптическая орбита рвется, и снаряд летит уже не по замкнутой, а по разомкнутой кривой — параболе. Поэтому скорость отрыва называют также параболической скоростью.
Дальнейшее увеличение начальной скорости снаряда при выстреле — выше параболической — заставит его лететь уже не по параболе, а по какой-нибудь гиперболе, все более «раскрывающейся» по мере роста скорости. Такие скорости называются гиперболическими 1. Снаряд, выстреленный с параболической скоростью 11,2 километра в секунду, обладает достаточной энергией, чтобы вырваться из оков тяготения Земли, но это не спасает его от действия солнечного тяготения, и он неминуемо попадет в конце концов в раскаленные объятия Солнца или начнет вращаться вокруг него по эллиптической орбите, как это случилось с советской космической ракетой.
Чтобы покинуть солнечную систему, снаряд должен обладать параболической скоростью по отношению к Солнцу. Эта скорость гораздо больше, чем скорость отрыва от Земли, так как поле солнечного тяготения мощнее, — она равна примерно 42,1 километра в секунду.
Конечно, на планетах, дальше отстоящих от Солнца, эта скорость меньше, так что на Плутоне она составляет всего 6,7 километра в секунду. На поверхности же Солнца эта скорость равна километрам в секунду, так как сила тяжести на Солнце в 28 раз больше, чем на Земле. Человек весил бы на Солнце 1,5 — 2 тонны, а то и больше. Чтобы траектория была параболической, нужно выдержать абсолютно точное значение параболической скорости.
Чуть меньшая скорость сделает траекторию эллиптической, чуть большая — гиперболической. На сравнительно небольших расстояниях эти траектории практически неразличимы и сливаются в одну. Это же относится, как отмечалось выше, к круговым орбитам — небольшое отклонение скорости от круговой превращает круговую орбиту в эллиптическую. Вряд ли мы могли бы надеяться когда-нибудь вырваться из оков солнечного тяготения, если бы не то обстоятельство, что Земля является спутником Солнца и, следовательно, уже обладает круговой скоростью в движении вокруг него.
Теперь легко подсчитать, какова должна быть начальная скорость межзвездного корабля при взлете с Земли.
Оказывается, она должна равняться примерно 16,7 километра в секунду использование вращения Земли вокруг оси может уменьшить эту скорость до 16,2 километра в секунду. Эта скорость часто называется освобождающей 1. Как видим, освобождающая скорость при использовании орбитальной скорости Земли вовсе не так велика — она оказывается меньше, чем необходимая идеальная скорость для полета на Луну.
Величина освобождающей скорости зависит от направления взлета корабля с Земли. Для того чтобы полностью использовать орбитальную скорость Земли, взлет межзвездного корабля должен осуществляться, очевидно, в том же направлении, что и движение Земли по ее орбите, — против часовой стрелки, если смотреть из точки, расположенной над Северным полюсом.
Практически во всех случаях полет межпланетного корабля вокруг Солнца должен происходить в том же направлении, что и движение планет. Так же совершает свой полет и советская космическая ракета.
Обратное направление, конечно, принципиально возможно, но практически вряд ли осуществимо, так как связано с очень уж большим расходом топлива. Кстати сказать, и любой межпланетный полет в пределах нашей солнечной системы также возможен благодаря тому счастливому для астронавтики обстоятельству, что все планеты движутся вокруг Солнца в одном и том же направлении; грустно было бы, если бы это было не так! Какой же маршрут изберет командир межпланетного корабля, направляя его, скажем, на Марс?
Очевидно, что, выбирая такой маршрут, командир будет решать нелегкую и вместе с тем ответственную задачу. Нелегкая она потому, что в мировом пространстве нет «заказанных» путей, там нет железных дорог и асфальтированных магистралей. Корабль полетит туда, куда направит его рука человека. И понятно, почему это ответственная задача: неудачный выбор трассы может намного увеличить продолжительность полета и необходимый запас топлива на корабле. Но, может быть, нужно установить раз и навсегда наилучшую трассу Земля — Марс с тем, чтобы осталось только обставить ее дорожными знаками, как на наших земных шоссе?
Нет, дело обстоит не так просто. Не говоря уже о том, что такая трасса не была бы, конечно, неподвижной в пространстве, а перемещалась в нем вместе с начальным и конечным пунктами — Землей и Марсом, сам характер этой трассы будет зависеть от особенностей полета.
Найти наивыгоднейший маршрут полета при заданной его продолжительности или заданном расходе топлива — вот важнейшая задача космонавигации. И прежде всего, конечно, хотелось бы знать, с каким маршрутом связан наименьший расход топлива. Как же решается эта задача в случае полета на Марс? Орбита Марса больше орбиты Земли — Марс находится дальше от Солнца.
Время одного полного обращения Земли по орбите, то есть продолжительность земного года, равно суткам. Марс совершает один оборот вокруг Солнца за земных суток. Значит, Земля обращается вокруг Солнца с вдвое большей угловой скоростью — она совершает немногим меньше двух оборотов, пока Марс успевает обежать вокруг Солнца один раз.
Вследствие этого противостояния Марса, то есть такие моменты, когда Марс ближе всего к Земле, приходятся примерно раз в 2 земных года, точнее — раз в суток 1. Благодаря значительной эксцентричности орбиты Марса расстояние до него во время противостояния меняется в довольно сильных пределах — от 56 до миллионов километров. Пусть наш корабль совершает свой полет в году, когда расстояние до Марса будет наименьшим; следующего такого же случая, так называемого великого противостояния, пришлось бы ждать целых 17 лет 2.
Одним словом, рукой подать! Казалось бы, что проще всего направить корабль по этому кратчайшему пути, но на самом деле это не так.
Мало того: и вообще-то по такому пути корабль совершить свой полет на Марс не сможет — ведь и Земля и Марс не неподвижны, они мчатся по своим орбитам вокруг Солнца. Конечно, можно заставить корабль лететь по этой воображаемой прямой, если это уж во что бы то ни стало необходимо, но это будет бессмыслицей. Во-первых, когда корабль достигнет орбиты Марса, летя по такой прямой, он не найдет там планеты: она уйдет далеко вперед.
А во-вторых, такой полет приведет к огромному перерасходу топлива. Ведь чтобы корабль двигался по этой прямой, его нужно направить под углом к ней, иначе он будет «снесен» в направлении движения Земли по орбите вспомните трамвай, с которого вы прыгаете на ходу.
Так же поступает лодочник, стремящийся пересечь реку по кратчайшему пути, — он направляет лодку не поперек реки, а ставит ее под углом.
Но из-за этого скорость, которую мы должны сообщить кораблю, чтобы он достиг орбиты Марса, сильно увеличивается: как показывает расчет, затрата энергии на перелет увеличивается при этом в 2,5 раза. Вот что значит «выгребать против течения»! Совершенно очевидно, что кратчайший путь между орбитами — далеко не самый выгодный.
Конечно, курьерский корабль, мало считающийся с «расходами» на путешествие и совершающий его в кратчайшее время, все-таки, может быть, полетит по наиболее короткому пути. Такой курьерский полет может быть совершен и за очень короткое время, была бы только скорость.
Однако наивыгоднейший в отношении расхода топлива полет должен происходить по такой траектории, чтобы полностью использовать круговую скорость Земли в ее движении вокруг Солнца. Но это значит, что взлет корабля должен происходить по касательной к орбите Земли, в том же направлении, в котором движется и сама Земля вокруг Солнца.
Такой взлет должен осуществляться, очевидно, около полуночи — в этот момент точка взлета, если она находится не на полюсе, расположена так, что корабль использует и скорость, которую имеет эта точка во вращении вокруг земной оси. Как полететь на Марс: 1 — полет по кратчайшему пути; Марс и Земля считаются неподвижными в точке противостояния; 2 — полет по кратчайшему пути до орбиты Марса; необходимая скорость корабля очень велика — приходится «плыть против течения»; 3 — полет курьерского корабля может длиться 2 месяца и даже меньше; 4 — наивыгоднейший полет, требующий наименьшего расхода топлива.
Как избрать начальную скорость корабля? Какой маршрут делает эту скорость наименьшей? Ответ на этот важнейший для астронавтики вопрос дать не просто. Ведь при решении этой задачи нужно учитывать многие факторы — и уровень развития реактивной техники скорость истечения газов и другие свойства топлив, конструкцию корабля и проч.
Расчеты показали 1 , что наивыгоднейшей траекторией является эллипс, касательный к обеим орбитам — Земли и Марса. Начальная и конечная точки пути лежат в этом случае по разные стороны от Солнца, на большой оси эллипса, длина которой равняется диаметру земной орбиты плюс расстояние между обеими орбитами по кратчайшему пути то есть во время противостояния. Значит, эта длина меняется от до миллионов километров.
Длина соответствующего полуэллипса, представляющего собой траекторию полета корабля, будет равна примерно миллионам километров. Время полета корабля по такому маршруту составляло бы примерно — дней.
Чтобы корабль совершил этот полет, его начальная скорость вне поля земного тяготения должна равняться всего 2,9 километра в секунду. Какую же скорость должен иметь в этом случае корабль при взлете с Земли? Однако такое решение было бы ошибочным. Если бы мы сообщили кораблю такую скорость, то вне поля земного тяготения скорость корабля составила бы не 2,9, а 8,6 километра в секунду.
Вот какая получается «странная» арифметика — начальная скорость корабля равна 14,1 километра в секунду, более 11 километров потеряно в борьбе с земным тяготением, и все еще осталось 8,6 километра в секунду!
В действительности же скорость корабля при взлете должна равняться всего 11,6 километра в секунду 1. Полет корабля на Марс и обратно по наивыгоднейшему маршруту будет длиться 2 года 8 месяцев.
Это значит, кстати сказать, что траекторией полета корабля в поле земного тяготения будет гипербола. Такой именно и была траектория полета первой советской космической ракеты, запущенной 2 января года; ее скорость была больше параболической.
Мы видим, насколько выгоднее сообщить кораблю при взлете сразу всю возможную скорость, — это носит характер важного закона астронавтики.
Если бы кораблю при взлете в нашем случае была сообщена только скорость отрыва 11,2 километра в секунду, а потом еще раз, уже вне поля земного тяготения, скорость 2,9 километра в секунду, то общая идеальная скорость равнялась бы, как было указано выше, 14,1 вместо 11,6 километра в секунду. Соответственно, конечно, вырос бы и необходимый запас топлива на корабле. Например, при скорости истечения газов 3 километра в секунду взлетное соотношение масс корабля увеличилось бы с 48 до При расчете общего расхода топлива на полет необходимо принимать во внимание и скорость корабля относительно Марса в момент их встречи.
Эта скорость должна быть погашена, в основном, торможением с помощью двигателя, так как атмосфера Марса очень разрежена. Это потребует дополнительного расхода топлива. В случае полета по касательному полуэллипсу в момент встречи с Марсом корабль будет мчаться медленнее его примерно на 2,7 километра в секунду. Конечно, можно было бы избрать и такой маршрут, чтобы при полете по нему эта относительная скорость была равна нулю. Здесь мы еще раз видим, как трудно выбрать наивыгоднейший маршрут.
При полете по наивыгоднейшему маршруту касательному эллипсу момент взлета корабля должен быть точно определен, иначе корабль не найдет Марса в «условленном» месте.
Так как это взаимное положение повторяется с такой же регулярностью, как и противостояние, то следующий удобный момент для полета на Марс наступит только через 2 года 50 дней.
Как видно, природа сама принимает меры для охлаждения пыла астронавтов — часто на Марс не полетишь по крайней мере, при помощи реактивной техники ближайшего будущего.
Вот почему, вероятно, в будущем эти выгодные моменты будут использоваться для организации экспедиций, состоящих из многих межпланетных кораблей, когда практически одновременно в путь пустится целый межпланетный флот.
Еще хуже будет обстоять дело с возвращением на Землю. Момент вылета с Земли можно переносить со дня на день без большого неудобства для пассажиров, но каково будет межпланетным путешественникам дожидаться на неуютном Марсе момента отправления корабля домой, на Землю, если это ожидание затянется на 2 года!
Простой расчет показывает, что после удачной посадки корабля на Марсе в случае полета по наивыгоднейшему полуэллипсу его пассажирам придется ждать там действительно около 15 месяцев, пока корабль сможет стартовать в обратный путь, если он хочет снова воспользоваться наивыгоднейшим маршрутом. Ценой сравнительно небольшого увеличения расхода топлива можно избирать другие траектории полета — не по касательному эллипсу, а по эллипсам, пересекающим обе орбиты или по крайней мере одну из них.
Это может привести к существенному сокращению продолжительности путешествия. Так, сокращение продолжительности полета на 3 месяца по сравнению с 8 месяцами полета по наивыгоднейшему маршруту может быть достигнуто ценой увеличения скорости корабля при взлете с Земли с 11,6 до 14,3 километра в секунду. Сокращение продолжительности полета всего до 4 месяцев потребовало бы увеличения взлетной скорости до 15,9 километра в секунду.
Уменьшение продолжительности полета достигается при этом как за счет роста скорости, так и за счет сокращения длины пути. Еще большего сокращения продолжительности полета можно достичь при увеличении скорости корабля относительно Солнца до гиперболической. При скорости корабля в сотни километров в секунду продолжительность полета на Марс может быть сокращена до недели. Траектории курьерских перелетов Земля — Марс.
Переход от касательного к секущим эллипсам, и в особенности к гиперболам, облегчает выбор момента старта корабля с Земли.
Теперь уже старт становится возможным в течение нескольких месяцев в году. Однако в отношении момента вылета с Марса в обратный путь к Земле положение меняется мало. Чтобы избежать слишком длительного пребывания на Марсе, можно воспользоваться для возвращения на Землю курьерским кораблем, способным совершать полет по гиперболической орбите со столь большой скоростью, что корабль оказывается уже в состоянии «догнать» Землю.
Однако это будет связано со значительным увеличением количества расходуемого топлива. Полет к следующим за Марсом внешним планетам солнечной системы может осуществляться принципиально так же, как и на Марс.
Корабль по-прежнему взлетает около полуночи — так, чтобы его скорость складывалась со скоростью движения Земли по орбите и вокруг своей оси.
Благодаря этому он начинает удаляться от Солнца, достигая орбиты соответствующей планеты в такой момент, когда там оказывается и сама планета. Полет к внутренним планетам, орбиты которых меньше земной, в частности полет к «таинственной незнакомке» — Венере, о которой, несмотря на ее соседство с Землей, астрономы знают весьма мало, должен совершаться иначе.
В этом случае достаточно уменьшить скорость корабля по сравнению с орбитальной скоростью Земли, чтобы корабль стал падать на Солнце, приближаясь к нему, пока не будет достигнута орбита Венеры. Для этого взлет корабля с Земли должен осуществляться в сторону, противоположную ее движению вокруг Солнца, то есть корабль должен стартовать около полудня 1.
За пределами поля земного тяготения скорость корабля должна равняться 2,4 Полет к Меркурию по касательному и секущему эллипсам километра в секунду, и, следовательно, скорость его при взлете с Земли — менее 11,5 километра в секунду 2.
При этом условии корабль совершит полет к Венере по наивыгоднейшему маршруту — касательному полуэллипсу, пройдя путь в миллионов километров, хотя кратчайшее расстояние до Венеры в 10 раз меньше. Полет до Венеры продлится в этом случае чуть меньше 5 месяцев. Как и в случае полета на Марс, для обратного полета на Землю по наивыгоднейшему маршруту путешественникам придется дожидаться на Венере более 15 месяцев. При взлете с полюса он может быть осуществлен в любое время суток. Полет на Венеру не по касательному эллипсу, а по эллипсам, пересекающим орбиты Земли и Венеры или по крайней мере одну из этих орбит, может, как и в случае путешествия на Марс, значительно сократить продолжительность полета при некотором увеличении расхода топлива.
Так, увеличение скорости на границе поля земного тяготения с 2,4 до 8 километров в секунду может сократить продолжительность полета почти вдвое.
Касательные полуэллипсы являются наиболее выгодными в отношении расхода топлива траекториями полета и к другим планетам солнечной системы. Это указывает, кстати сказать, на следующую особенность астронавтики: наивыгоднейший полет к ближайшей планете иногда должен длиться больше времени, чем к более отдаленной планете. Легко сообразить, о каком случае идет речь, — о полетах к внутренним планетам. Действительно, Венера ближе к Земле, чем Меркурий, но так как лететь надо «по ту сторону» Солнца, то путь к Венере оказывается большим и более длительным.
Маршрут полета для осмотра Марса и Венеры за один год. С полетом к внутренним планетам связана и еще одна особенность астронавтики: чем меньше скорость корабля, тем быстрее он достигает цели.
Почти что «тише едешь — дальше будешь». Секрет и здесь прост. Чем меньше скорость корабля относительно Солнца, тем прямее и короче путь к нему и, значит, тем меньше времени корабль будет находиться в полете к цели — Меркурию или Венере.
Если бы корабль был в момент взлета неподвижным относительно Солнца, то он падал бы на него по прямой, и в этом случае полет к Венере или Меркурию был бы самым коротким. Но надо помнить, что речь идет о скорости относительно Солнца.
Чтобы эта скорость была меньше, скорость корабля относительно Земли при взлете с нее должна быть больше — ведь корабль взлетает в этом случае против движения Земли по орбите, и его скорость должна погашать орбитальную скорость Земли. Если путешественники располагают временем и терпением, то они смогут совершить интересные «прогулки» по мировому пространству без посадки на какой-либо планете, но с обозрением ее с близкого расстояния, впрочем настолько почтительного, чтобы не подвергаться сильному притяжению планеты.
Такие путешествия могут быть осуществлены с минимальной затратой топлива, необходимой лишь для того, чтобы отправить корабль в бесконечное путешествие вокруг Солнца, превратив его в новую планету — астероид. Соответствующая скорость корабля при взлете с Земли должна быть больше скорости отрыва 11,2 километра в секунду , но меньше, чем освобождающая скорость 16,7 километра в секунду.
Подобрав соответствующим образом момент взлета и его скорость, то есть большую ось эллипса, можно совершить несколько оборотов вокруг Солнца, встретить и обозреть нужную планету и сесть на Землю, которая, обежав за это время тоже несколько раз вокруг Солнца, как раз встретится с кораблем в месте взлета. Подобные путешествия с изучением Марса, Венеры или Меркурия можно проделать за 3 года, Юпитера — за 6 лет и т.
Для такого полета вокруг Марса понадобится взлетная скорость корабля всего только на 0,4 — 0,5 километра в секунду больше, чем скорость отрыва. Подобная скорость была уже практически достигнута первой советской космической ракетой. По этому предложению, корабль совершает свой полет по эллиптической орбите вокруг Солнца, причем орбита выбирается таким образом, что она касается орбиты Марса и пересекает в двух точках орбиту Венеры.
Если подобрать момент старта, то можно добиться, чтобы корабль встретился с Марсом как раз тогда, когда орбита корабля касается орбиты Марса, и с Венерой — в точках, в которых орбита корабля пересекает орбиту Венеры. По расчетам Крокко, такой момент наступит только в июне года вот бы использовать этот случай! Весь полет должен длиться ровно год с тем, чтобы по возвращении корабль застал Землю как раз в месте старта. Конечно, все эти трассы являются лишь примерными, они дают общее представление о том, как будет пролегать в пространстве путь межпланетного корабля.
Расчеты истинной трассы каждого полета будут весьма точными и громоздкими.
Такие расчеты ведутся в настоящее время учеными разных стран с использованием сложных и совершенных электронных счетных машин — без них эти расчеты оказались бы практически невозможными. Правильно выполненный расчет позволяет осуществить полет с минимальной затратой топлива и, значит, с максимальным использованием полей тяготения, в которых движется корабль. При этом, вероятнее всего, в будущем космические трассы будут пролегать не непосредственно от одной планеты к другой, а между их спутниками, природными или искусственными.
В общем, судя по тому, что за расчеты космических трасс уже взялись не любители, а специалисты астрономы и математики, то есть как раз те, кому этим ведать надлежит, штурманы будущих космических кораблей окажутся во всеоружии гораздо раньше того времени, когда будет закончена отделка штурманской рубки первого межпланетного корабля.
Впрочем, это и правильно, за навигационными расчетами задержки быть не должно! Он должен в любую минуту знать, где находится самолет, над каким местом он пролетает, должен вносить необходимые поправки в намеченный заранее маршрут, разрабатывать и изменять при необходимости график полета — устанавливать нужную высоту полета, режим работы двигателей, скорость в зависимости от погоды в пути и других обстоятельств.
На него же обычно возлагается обязанность поддерживать радиосвязь, если на борту нет радиста. Штурман в своей рубке вечно корпит над картами, таблицами, графиками, что-то считает на специальных линейках, чертит.
Все остальные члены экипажа с уважением посматривают на труженика-штурмана, который в полете становится центральной фигурой. Это неудивительно, ведь успех полета зависит, как правило, от того, как «сработал» штурман Но о чем заботиться штурману межпланетного корабля, если маршрут его полета вычислен заранее со всей возможной точностью в специальных расчетных бюро и институтах? Никаких грозовых фронтов, циклонов и антициклонов межпланетному кораблю не придется встретить в течение всего полета, облака не встанут на его пути, ему не страшны ветры, дождь, снег.
В строгом соответствии с законами небесной механики будет мчаться корабль к своей далекой цели, чтобы, прочертив в мировом пространстве сложную кривую, заранее предначертанную во всех деталях, встретить в конечной точке этой кривой неведомую цель.
Настолько все ясно, что, пожалуй, даже стоит подумать о «сокращении штатов» экипажа межпланетного корабля за счет штурмана; о, на это место найдется немало претендентов, которые заведомо окажутся очень полезными в полете.
Ну, допустим, в первом полете еще куда ни шло, пусть штурман остается, мало ли какие возможны неожиданности. Но зато потом, когда все наладится, когда межпланетные полеты станут заурядными, никакого штурмана на корабле, вероятно, не будет. Ведь ни на минуту нельзя забывать о том, что каждый килограмм полезной нагрузки на корабле означает тонну, если не больше, взлетного веса корабля.
Не будет штурмана — и корабль станет легче на добрую сотню тонн. Но мы, кажется, делим шкуру неубитого медведя. Ибо в действительности ни один космический корабль не пустится в свое опасное путешествие без штурмана.
Несмотря на отсутствие многого из того, что усложняет жизнь штурманов самолетов или морских судов, на долю штурмана межпланетного корабля выпадет немало и таких забот, о которых его земные коллеги не имеют, к счастью, ни малейшего представления. Так что успех межпланетного полета еще в большей мере зависит от штурмана, чем успех полета на земле. И, конечно, штурман будет в любом межпланетном полете первым человеком на корабле. Почему же так сложна навигация в мировом пространстве?
Представим себя на минуту в штурманской рубке межпланетного корабля. Корабль стоит на старте, еще мгновение — и он отправится в невиданный полет.
Все готово к отлету, члены экипажа на своих местах, люки задраены. Взлет межпланетного корабля — очень важная часть любого космического полета. Подробнее об этом мы расскажем в главе Здесь же отметим, что, вероятнее всего, экипаж корабля будет освобожден от управления им во время взлета.
Это неудивительно: при взлете на экипаж будут действовать большие инерционные перегрузки, сильно затрудняющие движения человека. В подобных условиях экипаж не сможет обеспечить столь важное при взлете безошибочное управление. Корабль будет управляться либо автоматически, либо с наземной станции управления. Поэтому мы не удивимся, увидев, что и штурман лежит в кресле в течение всего взлета, не прикасаясь к своему обширному арсеналу навигационного оборудования.
Но вот взлет закончен, двигатель выключен. Корабль мчится за счет накопленной скорости по заранее намеченному пути. Только какая-нибудь неожиданность, какие-нибудь непредусмотренные обстоятельства могут изменить этот путь.
Не будет неожиданностей — и корабль будет мчаться в пространстве, поглощая колоссальные расстояния, пока не достигнет желанной цели. Пусть это случится через дни, недели, даже месяцы — все равно, раньше или позже, корабль будет у цели. Что же делать в этих условиях штурману? Неужели он начинает действовать только тогда, когда появляются эти неожиданности, и не будь их, мог бы так и не встать со своего кресла?
Увы, дело обстоит, к сожалению, совсем иначе. Современная техника пока еще не в состоянии справиться с трудностями, связанными с необозримостью пространств, преодолеваемых в межпланетном полете.